Approved Reseller
Approved Reseller
Un controlador o regulador PID es un dispositivo que permite controlar un sistema en lazo cerrado para que alcance el estado de salida deseado. El controlador PID está compuesto de tres elementos que proporcionan una acción Proporcional, Integral y Derivativa. Estas tres acciones son las que dan nombre al controlador PID.
La señal r(t) se denomina referencia e indica el estado que se desea conseguir en la salida del sistema y(t). En un sistema de control de temperatura, la referencia r(t) será la temperatura deseada y la salida y(t) será la temperatura real del sistema controlado.
Como puede verse en el esquema anterior, la entrada al controlador PID es la señal de error e(t). Esta señal indica al controlador la diferencia que existe entre el estado que se quiere conseguir o referencia r(t) y el estado real del sistema medido por el sensor, señal h(t).
Si la señal de error es grande, significa que el estado del sistema se encuentra lejos del estado de referencia deseado. Si por el contrario el error es pequeño, significa que el sistema ha alcanzado el estado deseado.
Para seguir leyendo…
Arduino lanza el nuevo Portenta Machine Control
Cómo conectar un Motor a Pasos a Arduino
Cómo conectar un Solenoide a Arduino
Al proceso de ajustar las ganancias para lograr el comportamiento deseado del sistema se le llama sintonización del controlador. Para sintonizar exitosamente las ganancias de un control PID, se sigue de este modo:
1º – Acción Proporcional. Se aumenta poco a poco la acción proporcional para disminuir el error (diferencia entre el estado deseado y el estado conseguido) y para aumentar la velocidad de respuesta. Si se alcanza la respuesta deseada en velocidad y error, el PID ya está sintonizado. Si el sistema se vuelve inestable antes de conseguir la respuesta deseada, se debe aumentar la acción derivativa.
2º – Acción Derivativa. Si el sistema es demasiado inestable, se aumentará poco a poco la constante derivativa Kd para conseguir de nuevo estabilidad en la respuesta.
3º – Acción Integral. En el caso de que el error del sistema sea mayor que el deseado, se aumentará la constante integral Ki hasta que el error se minimice con la rapidez deseada. Si el sistema se vuelve inestable antes de conseguir la respuesta deseada, se debe aumentar la acción derivativa.
Con estas sencillas reglas es sencillo afinar poco a poco el controlador PID hasta conseguir la respuesta deseada.
El control PID se aplica a sistemas que requieran de una alta precisión, como aplicaciones de temperatura o presión, en donde la salida final del sistema debe ser lo más cercana a la salida deseada. Además, con estos controladores se logra ajustar parámetros como la velocidad de respuesta y el sobrepaso, vitales en sistemas de posicionamiento.
Conclusiones:
Un controlador PID puede aplicarse a cualquier sistema o aplicación. Se usa comúnmente para controlar la posición de algún elemento mecánico, como puede ser un servomotor. Sin embargo, su uso se puede extender a controles de temperatura, velocidad, potencia, entre otros.
Referencias: